If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7k2 + -3k + -5 = 0 Reorder the terms: -5 + -3k + 7k2 = 0 Solving -5 + -3k + 7k2 = 0 Solving for variable 'k'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. -0.7142857143 + -0.4285714286k + k2 = 0 Move the constant term to the right: Add '0.7142857143' to each side of the equation. -0.7142857143 + -0.4285714286k + 0.7142857143 + k2 = 0 + 0.7142857143 Reorder the terms: -0.7142857143 + 0.7142857143 + -0.4285714286k + k2 = 0 + 0.7142857143 Combine like terms: -0.7142857143 + 0.7142857143 = 0.0000000000 0.0000000000 + -0.4285714286k + k2 = 0 + 0.7142857143 -0.4285714286k + k2 = 0 + 0.7142857143 Combine like terms: 0 + 0.7142857143 = 0.7142857143 -0.4285714286k + k2 = 0.7142857143 The k term is -0.4285714286k. Take half its coefficient (-0.2142857143). Square it (0.04591836735) and add it to both sides. Add '0.04591836735' to each side of the equation. -0.4285714286k + 0.04591836735 + k2 = 0.7142857143 + 0.04591836735 Reorder the terms: 0.04591836735 + -0.4285714286k + k2 = 0.7142857143 + 0.04591836735 Combine like terms: 0.7142857143 + 0.04591836735 = 0.76020408165 0.04591836735 + -0.4285714286k + k2 = 0.76020408165 Factor a perfect square on the left side: (k + -0.2142857143)(k + -0.2142857143) = 0.76020408165 Calculate the square root of the right side: 0.87189683 Break this problem into two subproblems by setting (k + -0.2142857143) equal to 0.87189683 and -0.87189683.Subproblem 1
k + -0.2142857143 = 0.87189683 Simplifying k + -0.2142857143 = 0.87189683 Reorder the terms: -0.2142857143 + k = 0.87189683 Solving -0.2142857143 + k = 0.87189683 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '0.2142857143' to each side of the equation. -0.2142857143 + 0.2142857143 + k = 0.87189683 + 0.2142857143 Combine like terms: -0.2142857143 + 0.2142857143 = 0.0000000000 0.0000000000 + k = 0.87189683 + 0.2142857143 k = 0.87189683 + 0.2142857143 Combine like terms: 0.87189683 + 0.2142857143 = 1.0861825443 k = 1.0861825443 Simplifying k = 1.0861825443Subproblem 2
k + -0.2142857143 = -0.87189683 Simplifying k + -0.2142857143 = -0.87189683 Reorder the terms: -0.2142857143 + k = -0.87189683 Solving -0.2142857143 + k = -0.87189683 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '0.2142857143' to each side of the equation. -0.2142857143 + 0.2142857143 + k = -0.87189683 + 0.2142857143 Combine like terms: -0.2142857143 + 0.2142857143 = 0.0000000000 0.0000000000 + k = -0.87189683 + 0.2142857143 k = -0.87189683 + 0.2142857143 Combine like terms: -0.87189683 + 0.2142857143 = -0.6576111157 k = -0.6576111157 Simplifying k = -0.6576111157Solution
The solution to the problem is based on the solutions from the subproblems. k = {1.0861825443, -0.6576111157}
| a^4-a^3-3a^2+5a-2=0 | | 8d^2-7d-3=0 | | x^2+2y^2-8y-6x-9=0 | | x^10-100=0 | | (3x+14)+(2x-4)=60 | | 25/100=x/4260 | | 5y-10+y+60=6y+50-3y | | y=-(x+3)(2x-7) | | -24a^5b^3/21a^2b | | 6+13s-4=7s+57-5s | | 20(x)=14(0.5) | | 12y-4y+3= | | 2c^2-16c+30=0 | | 2c^2-16c-30=0 | | 1/2(10−n)2n | | 5(5x+3)=-5(2x-5)+2x | | 3(4p+1)=7(p+9) | | -5(49x+12)=27(-30-x) | | 2(x-3)=39 | | 3+3u=12 | | 16x-2=15x+6 | | -15x-89=-63-25x | | N-20=7n+10 | | 6x+12=3x+75 | | 2(4x+2)=5x-32 | | 5p^2=60+20p | | 8p-15=4p-3 | | 2w+5=15-3w | | 3m-8m-6=64 | | 3/4x-3/8=1/2y | | 2p=14-5p | | 2x+4=106 |